产品手册 问题解答

杭叉高位无货架堆叠机新技术(自动驾驶+视觉识别)

分类:业内新闻 案例中心 3812

高位无货架堆叠机新技术(自动驾驶+视觉识别)

杭叉智能秉承“成为国际顶尖智能物流解决方案供应商”的经营理念,紧紧围绕经营目标,聚焦战略定位,对现有无人叉车不断创新,紧跟世界技术潮流,开发出具备机器深度学习与大数据管理能力的3D视觉目标检测解决方案,助力企业建立工业4.0智能化工厂,巩固行业领跑者的地位!

近日,杭叉智能研发团队运用自动驾驶和视觉识别技术,形成3D视觉目标检测解决方案,实现高位无货架堆叠难题的突破。该方案用户可轻松获得各应用场景下的目标检测模型,直接用于生产部署,切实满足企业的实际产业需求。

随着3D视觉技术的不断成熟,在生活中的应用越来越多,杭叉智能也着手利用3D视觉技术对无人叉车的进行不断优化。而自动驾驶和视觉识别的结合,更是达到了“1+1>2”效果,使得智能叉车的应用场景和精准性再次拓展提升。此次3D视觉目标检测解决方案的实现,创新提供高位无货架堆叠解决方案,助力杭叉智能无人叉车向灵活化、精准化、现代化迈进一大步!

该方案通过对3D视觉目标检测、目标检测网络和RT深度推理计算框架的核心技术的运用,实现了智能叉车对精度、灵活性、实时性的严格要求。

3D视觉目标检测

3D视觉目标检测技术具有测量精度高、更具灵活性的优点,破除了2D信息深度数据易丢失的局限性,能更加完整的表达真实目标,在实际应用中具有可靠性更高、安全性更强等诸多优点。
相较而言,3D模型比2D模型有更强的描述能力,目标检测识别准确率大大提升,同时还能满足更复杂的被测物体条件。

目标检测网络

目标检测网络支持小目标检测、准确性高,加强对小目标物体的检测效果,突破现有目标检测技术中的小目标检测瓶颈,达到工业级应用要求。大大降低最小目标像素下限,使最低八个像素的小目标都可以学习到特征,有效提高物体识别的准确性。

RT深度推理计算框架

RT深度推理计算负责模型的推理过程,大大提升物体检测速度,在GPU模式下可提供10X乃至100X的加速。经实际测试, 端口TensorRt加速后可至90帧左右,物体识别检测时间从4S提高到1-2S,有效提升AGV工作效率,完成满足工业实时性要求

标签:方案 上一篇: 下一篇:
展开更多
软件测试

loading...